SAFETY DATA SHEET

LENOL CL 70, LENOL CL 100, LENOL CL 140 **LENOL Germany GmbH**

Chemwatch: 5551-21 Version No: 7.1 Safety Data Sheet (Conforms to Annex II of REACH (1907/2006) - Regulation 2020/878) Issue Date: 02/09/2022 Print Date: 18/10/2022 S.REACH.DEU.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	LENOL CL 70, LENOL CL 100, LENOL CL 140
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Engine lubrication. Use according to manufacturer's directions.
Uses advised against	Not Applicable

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name	LENOL Germany GmbH	LENOL DMCC		
Address Alsterufer 20, 20354 Hamburg Germany JBC4 Tower, Cluster N, Unit 1501, Jumeirah Lakes Towers, P.C 451774 Dubai United Arab Emirates				
Telephone	+49 40 524 7007 30 Monday to Friday 9:00AM-4:00PM	+971 4 5582254 (Monday to Friday 9:00AM-4:00PM)		
Fax	Not Available	Not Available		
Website	Not Available	www.lenolmarine.com		
Email	Not Available	sds-info@lenolmarine.com		

1.4. Emergency telephone number

Association / Organisation	Chemwatch	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	+49 32 211121704 (All hours) ; Worldwide Toll-Free 0800 24362255	+49 32 211121704
Other emergency telephone numbers	Australia +61 1800 951 288 ; Canada +1 867 670 2867 ; Chile +56 42 2457 999 ; China +400 120 1632 ; Japan +81 50-3204-4966 ; Mexico +52 55 4440 1956 ; New Zealand +64 800 700 112 ; South Africa +27 21 813 6854 ; USA +1 855-237-5573	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008	Not Applicable
[CLP] and amendments [1]	

2.2. Label elements

Z.Z. Edder elements		
Hazard pictogram(s)	Not Applicable	
Signal word	Not Applicable	

Hazard statement(s)

Not Applicable

Supplementary statement(s)

_		
	EUH210	Safety data sheet available on request.

Chemwatch: **5551-21** Page **2** of **16**

Version No: 7.1

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

Not Applicable

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

2.3. Other hazards

Inhalation and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the eyes and respiratory tract*.

Repeated exposure potentially causes skin dryness and cracking*.

Vapours potentially cause drowsiness and dizziness*.

HARMFUL: may cause lung damage if swallowed

dodecylphenol, branched	Listed in the European Chemicals Agency (ECHA) Candidate List of Substances of Very High Concern for Authorisation		
dodecylphenol, branched	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)		
dodecylphenol, branched	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors		

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	SCL / M-Factor	Nanoform Particle Characteristics
1.Not Available 2.Not Available 3.Not Available 4.Not Available	10-25	mineral oil	Aspiration Hazard Category 1; H304 [1]	Not Available	Not Available
Not Available		(DMSO <3% w/w - IP346)	Not Applicable	Not Applicable	Not Available
1.121158-58-5 2.310-154-3 3.604-092-00-9 4.Not Available	<0.3	dodecylphenol, branched [e]	Skin Corrosion/Irritation Category 1C, Serious Eye Damage/Eye Irritation Category 1, Reproductive Toxicity Category 1B, Hazardous to the Aquatic Environment Acute Hazard Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H314, H318, H360F, H400, H410 [2]	M=10 M=10	Not Available
Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			n from C&L * EU		

SECTION 4 First aid measures

4.1. Description of first aid measures

4.1. Description of first aid measures					
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.				
Skin Contact	If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. If failure/misuse of high pressure/hydraulic equipment results in injection of grease/oil through the skin seek urgent medical attention. Treat as surgical emergency.				
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. 				
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. 				

Chemwatch: **5551-21**Page **3** of **16**Version No: **7.1**

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically. For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

 BP America Product Safety & Toxicology Department
- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.
- ▶ In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
- High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Foam
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- ► Water spray or fog Large fires only.

Do not use water jets.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
5.3. Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
	► Combustible.

CombustiblSlight fire h

- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive. Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2) nitrogen oxides (NOx) phosphorus oxides (POx)

sulfur oxides (SOx)

other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

Slippery when spilt.

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
 Control personal contact with the substance, by using protective equipment.

Chemwatch: 5551-21 Page 4 of 16 Issue Date: 02/09/2022

Version No: 7.1 Print Date: 18/10/2022

LENOL CL 70, LENOL CL 100, LENOL CL 140

	 Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Wait 2 minutes after tank filling (for tanks such as those on
- road tanker vehicles) before opening hatches or manholes.
 Wait 30 minutes after tank filling (for large storage tanks)
- before opening hatches or manholes. Even with proper
- grounding and bonding, this material can still accumulate an
- · electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable
- · air-vapour mixtures can occur. Be aware of handling
- operations that may give rise to additional hazards that result
- from the accumulation of static charges. These include but are
- not limited to pumping (especially turbulent flow), mixing,
- · filtering, splash filling, cleaning and filling of tanks and
- containers, sampling, switch loading, gauging, vacuum truck
 operations, and mechanical movements. These activities may
- lead to static discharge e.g. spark formation. Restrict line
- · velocity during pumping in order to avoid generation of
- electrostatic discharge (= 1 m/s until fill pipe submerged to
- \cdot twice its diameter, then = 7 m/s). Avoid splash filling.
- Do NOT use compressed air for filling, discharging, or handling operations
- Avoid all personal contact, including inhalation.
 Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Ose in a well-ventilated area.
 Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
 Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately
- ▶ Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Fire and explosion protection

See section 5

Store in original containers.Keep containers securely sealed.

- No smoking, naked lights or ignition sources.
- Other information

Safe handling

- Store in a cool, dry, well-ventilated area.
 Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container

► Metal can or drum

Version No: **7.1**

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022** Print Date: **18/10/2022**

	Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire. Oil leaks in a pressurized circuit may result in a fine flammable spray (the lower flammability limit for oil mist is reached for a concentration of about 45 g/m3 Autoignition temperatures may be significantly lower under particular conditions (slow oxidation on finely divided materials Avoid reaction with oxidising agents

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
dodecylphenol, branched	Dermal 0.25 mg/kg bw/day (Systemic, Chronic) Dermal 166 mg/kg bw/day (Systemic, Acute) Inhalation 44.18 mg/m³ (Systemic, Acute) Dermal 0.075 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.79 mg/m³ (Systemic, Chronic) * Oral 0.075 mg/kg bw/day (Systemic, Chronic) * Dermal 50 mg/kg bw/day (Systemic, Acute) * Inhalation 13.26 mg/m³ (Systemic, Acute) * Oral 1.26 mg/kg bw/day (Systemic, Acute) *	0.074 µg/L (Water (Fresh)) 0.007 µg/L (Water - Intermittent release) 0.37 µg/L (Water (Marine)) 0.226 mg/kg sediment dw (Sediment (Fresh Water)) 0.027 mg/kg sediment dw (Sediment (Marine)) 0.118 mg/kg soil dw (Soil) 100 mg/L (STP) 4 mg/kg food (Oral)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Germany TRGS 900 - Limit Values for the Workplace Atmosphere	mineral oil	Mineralöle (Erdöl), stark raffiniert	5 mg/m3	Not Available	Not Available	Not Available
Germany TRGS 900 - Limit Values for the Workplace Atmosphere	mineral oil	Weißes Mineralöl (Erdöl)	5 mg/m3	Not Available	Not Available	(Limit value mg/m3 (A))
Germany Recommended Exposure Limits - MAK Values	mineral oil	Mineral oils (petroleum), severely refined (respirable fraction)	5 mg/m3	20 mg/m3	Not Available	Preg gr: C

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
mineral oil	140 mg/m3	1,500 mg/m3	8,900 mg/m3
dodecylphenol, branched	4.1 mg/m3	45 mg/m3	420 mg/m3

Ingredient	Original IDLH	Revised IDLH
mineral oil	2,500 mg/m3	Not Available
dodecylphenol, branched	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
dodecylphenol, branched	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

8.2. Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

8.2.1. Appropriate engineering

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)

Chemwatch: 5551-21 Page 6 of 16 Issue Date: 02/09/2022
Version No: 7.1 Print Date: 18/10/2022

LENOL CL 70, LENOL CL 100, LENOL CL 140

aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

0.5-1 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

- ▶ Safety glasses with side shields.
- Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

Hands/feet protection

- As defined in ASTM F-739-96 in any application, gloves are rated as:
- \cdot Excellent when breakthrough time > 480 min
- \cdot Good when breakthrough time > 20 min
- \cdot Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.Barrier cream.
- Skin cleansing cream.
- ► Eye wash unit.

Version No: 7.1

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

 $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ B3 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below 65 \ degC)$

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Brown viscous liquid, floats on water. Pour point -6 degC.		
Physical state	Liquid	Relative density (Water = 1)	0.930-0.982
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	19.5-26 @ 100C
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>220 (ASTM D92)	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	>1	VOC g/L	Not Applicable
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

Chemwatch: 5551-21 Page 8 of 16 Issue Date: 02/09/2022 Version No: 7.1 Print Date: 18/10/2022

LENOL CL 70, LENOL CL 100, LENOL CL 140

11.1. Information on toxicological effects

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation hazard is increased at higher temperatures.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic

effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and

Inhalation of oil droplets or aerosols may cause discomfort and may produce chemical inflammation of the lungs.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual

Ingestion

Inhaled

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Skin Contact

The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material

The material may accentuate any pre-existing dermatitis condition

This material can cause eve irritation and damage in some persons.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin

prior to the use of the material and ensure that any external damage is suitably protected.

Eve

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can

cause irritation and excessive tear secretion.

Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause other toxic effects.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Oil may contact the skin or be inhaled. Extended exposure can lead to eczema, inflammation of hair follicles, pigmentation of the face and warts

Chronic

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. High boiling residues of petroleum process can produce both benign and malignant skin tumours, according to animal testing. They may contain

significant concentrations of polynuclear aromatic hydrocarbons (PAHs). Oil may contact the skin or be inhaled. Extended exposure can lead to eczema, inflammation of hair follicles, pigmentation of the face and warts on the soles of the feet

LENOL CL 70, LENOL CL 100, LENOL CL 140	TOXICITY	IRRITATION	
	Not Available	Not Available	
	TOXICITY	IRRITATION	
mineral oil	Not Available	Not Available	
	TOXICITY	IRRITATION	
dodecylphenol, branched	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]	
	Oral (Rat) LD50; <5000 mg/kg ^[1]	Skin: adverse effect observed (irritating) ^[1]	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Residual oils have substantial measurable levels of polycyclic aromatic compounds (PAC), and would therefore be expected to have mutationcausing and/or cancer-causing activity. However, no adverse effects have been seen in testing, irrespective of the degree of processing they

Acute toxicity: There is no acute toxicity data available for the residual base oils. It is thought that the high molecular weight of these materials and associated low bioavailability prevent acute toxicity. Tests of a variety of distillate base oils, including unrefined materials that contain high levels of biologically active materials, have consistently shown low acute toxicity.

Repeat dose toxicity: No data from tests are available.

have undergone.

LENOL CL 70, LENOL CL 100,

LENOL CL 140

Reproductive and developmental toxicity: No data from tests are available.

Cancer-causing potential: Animal testing has not shown any development of cancer due to residual oils

Genetic toxicity: Testing for the potential of residual oils to produce mutations and chromosomal aberrations have shown negative results. High boiling residues of petroleum process can produce both benign and malignant skin tumours, according to animal testing. They may contain significant concentrations of polynuclear aromatic hydrocarbons (PAHs).

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

The substance is classified by IARC as Group 3:

Chemwatch: 5551-21 Page 9 of 16 Issue Date: 02/09/2022 Version No: 7.1

LENOL CL 70, LENOL CL 100, LENOL CL 140

Print Date: 18/10/2022

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

For highly and severely refined distillate base oils:

In animal studies, the acute, oral, semilethal dose is >5g/kg body weight and the semilethal dose by skin contact is >2g/kg body weight. The semilethal concentration for inhalation is 2.18 to >4 mg/L. The materials have varied from "non-irritating" to "moderately irritating" when tested for skin and eve irritation. Testing for sensitisation has been negative. The effects of repeated exposure vary by species: in animals, effects to the testes and lung have been observed, as well as the formation of granulomas. In animals, these substances have not been found to cause reproductive toxicity or significant increases in birth defects. They are also not considered to cause cancer, mutations or chromosome

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The chemical possesses properties indicating a potential hazard for human health (effects on fertility and developmental toxicity at doses that also cause maternal toxicity). Adequate screening-level data are available to characterize the human health hazard for the purposes of the OECD Cooperative Chemicals Assessment Programme

SID Initial Assessment Profile (SIAM 22, 18-21 April 2006)

for tetrapropenyl phenol and its derivatives.

for para-C12-alkylphenols (typically tetrapropenylphenol)

Based on the toxicological findings presented in this review, para-C12-alkylphenols do not appear to meet the EU criteria for classification for acute toxicity by the oral and dermal routes of exposure, skin sensitisation, repeated dose toxicity or mutagenicity. No information is available relating to acute toxicity via inhalation exposure, and carcinogenicity. The following characteristics do suggest that the substance warrants consideration for classification:

Irritation: para-C12-alkylphenols apparently meet the EU criteria for classification as a skin irritant and a severe eye irritant. Classification for corrosivity could be considered.

Reproductive toxicity: • Fertility: The treatment-related effects on fertility, with supporting pathological changes indicating site of action, appear to meet the EU criteria for classification. The observation that the fertility effects only occurred in the presence of general toxicity might need to be taken into account in deciding the most appropriate category. Overall, these findings suggest that category 2 classification for acute toxicity may be most appropriate, although arguments for category 3 might be considered.

Developmental toxicity: para-C12-alkylphenols caused craniofacial (cleft palate, 3 pups from 1 litter) and long bone malformations (bent long bones) in rats, but only at doses that caused some non-specific maternal toxicity (reduced body weight gain). These findings are not considered to be a secondary non- specific consequence of general toxicity and hence classification for developmental toxicity should be considered. A decision on whether category 2 or 3 is most appropriate may need expert consideration.

Classification for the environment

The substance is classified by the producers as 'dangerous to the environment (with the symbol N) with the following risk phrases: R50/53: Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment This is based on the following data:

- · Aquatic toxicity: 48-hour Daphnia EC50 <1 mg/L;
- · log Kow >3 and measured fish bioconcentration factor of 823;
- Not readily biodegradable.

Acute toxicity data for the oral route of exposure are available for the rat only. LD50 values of 2,100 and 2,200 mg/kg were obtained in two separate studies. In one study, no deaths were observed with a single oral dose of 500 mg/kg but one rat at this dose level showed bloody urine that persisted for 48 hours post-dosing. A NOAEL for the effects of a single oral dose cannot be determined. Signs of toxicity observed in the acute oral toxicity studies included ruffled fur, diarrhoea, diuresis, retarded motion and ataxia.

Dermal: Two studies are available, both in rabbits. The findings indicate that deaths occur with doses above 3,160 mg/kg, and an LD50 of 15,000 mg/kg has been reported. Studies in rabbits indicate that tetrapropenylphenol is a severe skin irritant.

Eye: Studies in rabbits indicate that tetrapropenylphenol is an eye irritant capable of causing corneal opacity and iritis.

Respiratory tract: No data are available concerning respiratory tract irritancy. Given the evidence for skin and eye irritancy, it might be expected that inhaled tetrapropenylphenol would irritate the respiratory tract.

Corrosivity: Necrosis and eschar formation have been reported following dermal application of tetrapropenylphenol to rabbits. From the data available it is uncertain whether or not tetrapropenylphenol should be regarded as corrosive or as a severe skin irritant.

Sensitisation: Tetrapropenylphenol was not identified as a cause of skin sensitisation in two studies in guinea pigs

Repeated dose toxicity: Repeated dosing of tetrapropenylphenol to rats in oral studies, both dietary and gavage, produces effects in a number of organs including the reproductive organs in both sexes.

In the 28-day gavage study in rats, no toxicologically significant treatment-related effects were observed at 5 mg/kg/day. At the next higher dose of 20 mg/kg/day, adrenal cortical gland hypertrophy was observed in male rats. At 180 mg/kg/day and above, pathological changes and organ weight changes were observed in a number of organs, including prominent changes in the reproductive organs in both sexes

In the dietary studies, effects on the testes were noted at 250 mg/kg/day (28-day study) and 106 mg/kg/day (90-day study). No treatment-related toxicological effects were seen in the dietary studies at 25 and 28 mg/kg/day respectively.

No treatment-related changes were reported in dogs at doses up to 4,000 ppm in the diet (estimated by the author to be equivalent to 180 mg/kg/day assuming a body weight of 11 kg and a daily food consumption of 0.5 kg). The absence of treatment- related changes in dogs suggests the existence of a species difference.

Genotoxicity: From the in vitro and in vivo studies available it can be concluded that tetrapropenylphenol is not mutagenic.

Carcinogenicity: There are no carcinogenicity studies available for tetrapropenylphenol. Given the lack of evidence for mutagenicity it is likely that if tetrapropenylphenol had the potential to cause cancer it would involve a threshold mechanism. It is uncertain whether or not the effects on the uterus and the endometrial gland cysts in the one-generation fertility study at the top dose of 125 mg/kg/day indicate the possibility of uterine cancer at these sites following prolonged exposure.

Reproductive toxicity: Tetrapropenylphenol has an adverse effect on fertility in rats, causing a marked reduction in fertility at 125 mg/kg/day. At doses of 25 mg/kg/day and above tetrapropenylphenol causes a reduction in mean pup weight and pathological changes in the reproductive organs of both sexes. The reduction in fertility and effects on reproductive organs occurred at doses that also caused other toxic effects, including reduced bodyweight gain and food consumption and changes in the adrenals, kidneys and liver. However, this toxicity was not considered to be particularly severe such that the adverse effects on fertility could have been a secondary non-specific consequence of general toxicity. The NOAEL for reproductive effects is 5 mg/kg/day.

Developmental toxicity: Tetrapropenylphenol is also a developmental toxicant in rats, causing teratogenic effects as shown by cleft palate and ectodactyly (reduced number of digits) as well as a general increase in the total number of skeletal malformations at 300 mg/kg/day. These manifestations of developmental toxicity occurred in the presence of overt maternal toxicity, indicated by a significant reduction in body weight

Environmental risk evaluation report: para-C12-alkylphenols (dodecylphenol and tetrapropenylphenol): Environment Agency UK

LENOL CL 70, LENOL CL 100. **LENOL CL 140 & MINERAL**

OIL

DODECYLPHENOL.

BRANCHED

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- The adverse effects of these materials are associated with undesirable components, and
- The levels of the undesirable components are inversely related to the degree of processing;

Chemwatch: 5551-21 Page 10 of 16 Issue Date: 02/09/2022 Version No: 7.1

LENOL CL 70, LENOL CL 100, LENOL CL 140

Print Date: 18/10/2022

- Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- The potential toxicity of residual base oils is independent of the degree of processing the oil receives
- The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential cancer-causing and mutation-causing activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Testing of residual oils for mutation-causing and cancer-causing potential has shown negative results, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing.

LENOL CL 70, LENOL CL 100, **LENOL CL 140 &** DODECYLPHENOL. **BRANCHED**

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	X
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

— Data either not available or does not fill the criteria for classification

Data available to make classification

11.2 Information on other hazards

11.2.1. Endocrine Disruption Properties

Not Available

SECTION 12 Ecological information

12.1. Toxicity

LENOL CL 70, LENOL CL 100, LENOL CL 140	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
mineral oil	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	0.15mg/l	2
dodecylphenol, branched	EC50	48h	Crustacea	0.037mg/l	2
	NOEC(ECx)	504h	Crustacea	0.004mg/l	2
	LC50	96h	Fish	3.2mg/l	2
Legend:	Ecotox databas	IUCLID Toxicity Data 2. Europe ECHA Registe e - Aquatic Toxicity Data 5. ECETOC Aquatic Ha ion Data 8. Vendor Data	· ·		

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- b drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- ▶ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation

for lubricating oil base stocks:

Vapor Pressure Vapor pressures of lubricating base oils are reported to be negligible. In one study, the experimentally measured vapour pressure of a solvent-dewaxed heavy paraffinic distillate base oil was 1.7 x 10exp-4 Pa . Since base oils are mixtures of C15 to C50 paraffinic, naphthenic, and aromatic hydrocarbon isomers, representative components of those structures were selected to calculate a range of vapor pressures. The estimated vapor pressure values for these selected components of base oils ranged from 4.5 x 10exp-1 Pa to 2 x 10exp-13Pa. Based on Dalton's Law the expected total vapour pressure for base oils would fall well below minimum levels (10exp-5 Pa) of recommended experimental

Partition Coefficient (log Kow): In mixtures such as the base oils, the percent distribution of the hydrocarbon groups (i.e., paraffins, naphthenes, and aromatics) and the carbon chain lengths determines in-part the partitioning characteristics of the mixture. Generally, hydrocarbon chains with fewer carbon atoms tend to have lower partition coefficients than those with higher carbon numbers . However, due to their complex composition, unequivocal determination of the log Kow of these hydrocarbon mixtures cannot be made. Rather partition coefficients of selected C15 chain-length hydrocarbon structures representing paraffinic, naphthenic, and aromatic constituents in base oil lubricants were modelled . Results showed typical log Kow values from 4.9 to 7.7, which were consistent with values of >4 for lubricating oil basestocks

Water Solubility: When released to water, base oils will float and spread at a rate that is viscosity dependent. While water solubility of base oils is typically very low, individual

Chemwatch: **5551-21** Page **11** of **16** Issue Date: **02/09/2022**

Version No: 7.1 LENOL CL 70, LENOL CL 100, LENOL CL 140 Print Date: 18/10/2022

hydrocarbons exhibit a wide range of solubility depending on molecular weight and degree of unsaturation. Decreasing molecular weight (i.e., carbon number) and increasing levels of unsaturation increases the water solubility of these materials. As noted for partition coefficient, the water solubility of lubricating base oils cannot be determined due to their complex mixture characteristics. Therefore, the water solubility of individual C15 hydrocarbons representing the different groups making up base oils (i.e., linear and branched paraffins, naphthenes, and aromatics) was modelled. Based on water solubility modelling of those groups, aqueous solubilities are typically much less than 1 ppm. (0.003-0.63 mg/l)

Photodegradation: Chemicals having potential to photolyse have UV/visible absorption maxima in the range of 290 to 800 nm. Some chemicals have absorption maxima significantly below 290 nm and consequently cannot undergo direct photolysis in sunlight (e.g. chemicals such as alkanes, alkenes, alkynes, saturated alcohols, and saturated acids). Most hydrocarbon constituents of the materials in this category are not expected to photolyse since they do not show absorbance within the 290-800 nm range. However, photodegradation of polyaromatic hydrocarbons (PAHs) can occur and may be a significant degradation pathway for these constituents of lubricating base oils. The degree and rate at which PAHs may photodegrade depend upon whether conditions allow penetration of light with sufficient energy to effect a change. For example, polycyclic aromatic compounds (PAC) compounds bound to sediments may persist due to a lack of sufficient light penetration

Atmospheric gas-phase reactions can occur between organic chemicals and reactive molecules such as photochemically produced hydroxyl radicals, ozone and nitrogen oxides. Atmospheric oxidation as a result of radical attack is not direct photochemical degradation, but indirect degradation. In general, lubricating base oils have low vapour pressures and volatilisation is not expected to be a significant removal mechanism for the majority of the hydrocarbon components. However, some components (e.g., C15 branched paraffins and naphthenes) appear to have the potential to volatilise Atmospheric half-lives of 0.10 to 0.66 days have been calculated for representative C15 hydrocarbon components of lubricating base oils

Stability in Water: Chemicals that have a potential to hydrolyze include alkyl halides, amides, carbamates, carboxylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters. Because lubricating base oils do not contain significant levels of these functional groups, materials in the lubricating base oils category are not subject to hydrolysis

Chemical Transport and Distribution in the Environment: Based on the physical-chemical characteristics of component hydrocarbons in lubricating base oils, the lower molecular weight components are expected to have the highest vapour pressures and water solubilities, and the lowest partition coefficients. These factors enhance the potential for widespread distribution in the environment. To gain an understanding of the potential transport and distribution of lubricating base oil components, the EQC (Equilibrium Criterion) model was used to characterize the environmental distribution of different C15 compounds representing different structures found in lube oils (e.g., paraffins, naphthenes, and aromatics). The modelling found partitioning to soil or air is the ultimate fate of these C15 compounds. Aromatic compounds partition principally to soil. Linear paraffins partition mostly to soil, while branching appears to allow greater distribution to air. Naphthenes distribute to both soil and air, with increasing proportions in soil for components with the greater number of ring structures. Because the modelling does not take into account degradation factors, levels modelled in the atmosphere are likely overstated in light of the tendency for indirect photodegradation to occur.

Biodegradation: The extent of biodegradation measured for a particular lubricating oil basestock is dependent not only on the procedure used but also on how the sample is presented in the biodegradation test. Lubricant base oils typically are not readily biodegradable in standard 28-day tests. However, since the oils consist primarily of hydrocarbons that are ultimately assimilated by microorganisms, and therefore inherently biodegradable. Twenty-eight biodegradability studies have been reported for a variety of lubricating base oils. Based on the results of ultimate biodegradability tests using modified Sturm and manometric respirometry testing the base oils are expected to be, for the most part, inherently biodegradable. Biodegradation rates found using the modified Sturm procedure ranged from 1.5 to 29%. Results from the manometric respirometry tests on similar materials showed biodegradation rates from 31 to 50%. Biodegradation rates measured in 21-day CEC tests for similar materials ranged from 13 to 79%.

Ecotoxicity:

Numerous acute studies covering fish, invertebrates, and algae have been conducted to assess the ecotoxicity of various lubricating base oils. None of these studies have shown evidence of acute toxicity to aquatic organisms. Eight, 7-day exposure studies using rainbow trout failed to demonstrate toxicity when tested up to the maximum concentration of 1000 mg/L applied as dispersions. Three, 96-hour tests with rainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fathead minnows at a maximum test concentration of 100 mg/L water accommodated fractions (WAF) showed no adverse effects. Two species of aquatic invertebrates (Daphnia magna and Gammarus sp.) were exposed to WAF solutions up to 10,000 mg/L for 48 and 96-hours, respectively, with no adverse effects being observed. Four-day exposures of the freshwater green alga (Scenedesmus subspicatus) to 500 mg/L WAF solutions failed to show adverse effects on growth rate and algal cell densities in four studies Multiple chronic ecotoxicity studies have shown no adverse effects to daphnid survival or reproduction. In 10 of 11 chronic studies, daphnids were exposed for 21 days to WAF preparations of lubricating base oils with no ill effects on survival or reproduction at the maximum concentration of 1000 mg/L. One test detected a reduction in reproduction at 1000 mg/L. Additional data support findings of no chronic toxicity to aquatic invertebrates and fish. No observed effect levels ranged from 550 to 5,000 mg/L when tested as either dispersions or WAF's.

The data described above are supported by studies on a homologous series of alkanes. The author concluded that the water solubility of carbon chains .C10 is too limited to elicit acute toxicity. This also was shown for alkylbenzene compounds having carbon numbers .C15. Since base oils consist of carbon compounds of C15 to C50, component hydrocarbons that are of acute toxicological concern are, for the most part, absent in these materials. Similarly, due to their low solubility, the alkylated two to three ring polyaromatic components in base oils are not expected to cause acute or chronic toxicity. This lack of toxicity is borne out in the results of the reported studies.

The effects of crude and refined oils on organisms found in fresh and sea water ha been extensively reviewed.

sea water. Where spillages occur the non-mobile species suffer the greatest mortality, whereas fish species can often escape from the affected region. The extent of the initial mortality depends on the chemical nature of the oil, the location, and the physical conditions, particularly the temperature and wind velocity. Most affected freshwater and marine communities recover from the effects of an oil spill within a year. The occurrence of biogenic hydrocarbons in the world's oceans is well recorded. They have the characteristic isoprenoid structure, and measurements made in water columns indicate a background concentration of 1.0 to 10 ul/l. The higher molecular weight materials are dispersed as particles, with the highest concentrations of about 20 ul/l occurring in the top 3 mm layer of water.

A wide variation in the response of organisms to oil exposures has been noted. The larvae of fish and crustaceans appear to be most susceptible to the water-soluble fraction of crude oil. Exposures of plankton and algae have indicated that certain species of diatoms and green algae are inhibited, whereas microflagellates are not.

For the most part, molluscs and most intertidal worm species appear to be tolerant of oil contamination.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be similar to the case of spills on land or water surfaces.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10–C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and $\,$
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

Version No: **7.1**

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
dodecylphenol, branched	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
dodecylphenol, branched	MEDIUM (BCF = 850)

12.4. Mobility in soil

Ingredient	Mobility
dodecylphenol, branched	LOW (KOC = 382000)

12.5. Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	×	×	×
PBT Criteria fulfilled?			No
vPvB			No

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

One or more ingredients within this SDS has the potential of causing ozone depletion and/or photochemical ozone creation.

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- ► Reduction ► Reuse
- ▶ Recycling

Chemwatch: **5551-21** Page **13** of **16**

Version No: **7.1** LENOL CL **70**, LENOL CL **100**, LENOL CL **140**

Issue Date: **02/09/2022**Print Date: **18/10/2022**

Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains.

It may be necessary to collect all wash water for treatment before disposal.

In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Where in doubt contact the responsible unterity.

Recycle wherever possible or consult manufacturer for recycling options.

Consult State Land Waste Authority for disposal.

Bury or incinerate residue at an approved site.

Recycle containers if possible, or dispose of in an authorised landfill.

Waste treatment options

Not Available

SECTION 14 Transport information

Sewage disposal options

Labels Required

Marine Pollutant NO

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Not Available

Zuna tranoport (/tb/t/): 110 1 112		or printed nood doops	
14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Class Not Applicable Subrisk Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
	Hazard identification (Kemler)	Not Applicable	
	Classification code	Not Applicable	
14.6. Special precautions for	Hazard Label	Not Applicable	
user	Special provisions	Not Applicable	
	Limited quantity	Not Applicable	
	Tunnel Restriction Code	Not Applicable	
]		

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable	Not Applicable		
14.2. UN proper shipping name	Not Applicable			
	ICAO/IATA Class	Not Applicable		
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
ciass(cs)	ERG Code	ERG Code Not Applicable		
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
	Special provisions		Not Applicable	
	Cargo Only Packing Instructions		Not Applicable	
	Cargo Only Maximum Qty / Pack		Not Applicable	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		Not Applicable	
user	Passenger and Cargo Maximum Qty / Pack		Not Applicable	
	Passenger and Cargo	Limited Quantity Packing Instructions	Not Applicable	
	Passenger and Cargo Limited Maximum Qty / Pack		Not Applicable	

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable	Not Applicable	
14.2. UN proper shipping name	Not Applicable	Not Applicable	
14.3. Transport hazard class(es)	IMDG Class IMDG Subrisk	Not Applicable Not Applicable	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable	Not Applicable	

Chemwatch: **5551-21**Version No: **7.1**

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

14.6. Special precautions for user	EMS Number	Not Applicable
	Special provisions	Not Applicable
	Limited Quantities	Not Applicable

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

	•		
14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Not Applicable Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Classification code Not Applicable Special provisions Not Applicable Limited quantity Not Applicable Equipment required Not Applicable Fire cones number Not Applicable		

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
mineral oil	Not Available
dodecylphenol, branched	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
mineral oil	Not Available
dodecylphenol, branched	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

mineral oil is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

Germany Classification of Substances Hazardous to Waters (WGK)

Germany Recommended Exposure Limits - MAK Values

Germany Recommended Exposure Limits - MAK Values - Pregnancy Risk Group

Classifications & Germ Cell Mutagens

Germany TRGS 900 - Limit Values for the Workplace Atmosphere

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

dodecylphenol, branched is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 6) Reproductive toxicants: Category 1 B

EU REACH Regulation (EC) No 1907/2006 - Proposals to identify Substances of Very High Concern: Annex XV reports for commenting by Interested Parties previous consultation

Europe EC Inventory

Europe European Chemicals Agency (ECHA) Candidate List of Substances of Very High Concern for Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

Germany Classification of Substances Hazardous to Waters (WGK)

Germany Institute for Occupational Safety Social Accident Insurance (IFA) List of the carcinogenic, mutagenic and reproduction (CMR) substances (German)

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

ECHA SUMMARY

Ingredient	CAS number Index No		ECHA Dossier		er
mineral oil	Not Available	Not Available		Not Available	
Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)		Pictograms Signal Word (Code(s)	Hazard Statement Code(s)

Page **15** of **16 LENOL CL 70, LENOL CL 100, LENOL CL 140**

Issue Date: **02/09/2022** Print Date: **18/10/2022**

Harmonisation (C&L Inventory) Hazard Class and Category Code(s) Aquatic Chronic 3; Asp. Tox. 1; Skin Irrit. 2; Eye Irrit. 2 GHS08; Dgr H412; H304; H315; H319 Aquatic Chronic 3; Asp. Tox. 1; Skin Irrit. 2; Eye Irrit. 2 GHS08; Dgr H412; H304; H315; H319

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

Ingredient	CAS number	Index No	ECHA Dossier
dodecylphenol, branched	121158-58-5	604-092-00-9	Not Available

Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1	GHS09; GHS08; GHS05; Dgr	H314; H318; H360; H400; H410
2	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1	GHS09; GHS08; GHS05; Dgr	H314; H318; H360; H400; H410
1	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1	GHS09; GHS08; GHS05; Dgr	H314; H360; H410
2	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1; Acute Tox. 4	GHS09; GHS08; GHS05; Dgr	H314; H410; H319; H400; H302; H360F
1	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1	GHS09; GHS08; GHS05; Dgr	H314; H318; H360; H410
2	Skin Corr. 1C; Eye Dam. 1; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1; STOT SE 3	GHS09; GHS08; GHS05; Dgr	H314; H318; H360; H410; H335
1	Skin Irrit. 2; Eye Irrit. 2; Repr. 2; Aquatic Acute 1; Aquatic Chronic 1	GHS09; GHS08; Wng	H315; H319; H361; H410
2	Eye Irrit. 2; Repr. 2; Aquatic Acute 1; Aquatic Chronic 1; Skin Corr. 1B	GHS09; GHS08; GHS05; Dgr	H319; H361; H410; H314

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

15.3. Classification of Substances and Mixtures into Water Hazard Classes

Preparation is WGK 1

Name	WGK	Score	Source
MINERAL OIL	1		From Regulation
DODECYLPHENOL, BRANCHED	2		From Regulation

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	Yes
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	02/09/2022
Initial Date	05/08/2022

Full text Risk and Hazard codes

H302	Harmful if swallowed.
H304	May be fatal if swallowed and enters airways.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H318	Causes serious eye damage.

Chemwatch: **5551-21** Page **16** of **16**

Version No: 7.1

LENOL CL 70, LENOL CL 100, LENOL CL 140

Issue Date: **02/09/2022**Print Date: **18/10/2022**

H319	Causes serious eye irritation.
H335	May cause respiratory irritation.
H360	May damage fertility or the unborn child.
H360F	May damage fertility.
H361	Suspected of damaging fertility or the unborn child.
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effects.
H412	Harmful to aquatic life with long lasting effects.

SDS Version Summary

Version	Date of Update	Sections Updated
6.1	30/08/2022	Acute Health (inhaled), Chronic Health, Classification, Fire Fighter (extinguishing media), First Aid (skin), Ingredients
7.1	02/09/2022	Classification, Exposure Standard, Ingredients, Name

Other information

Ingredients with multiple cas numbers

Name	CAS No
dodecylphenol, branched	121158-58-5, 27193-86-8, 210555-94-5., 104-43-8

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

 ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.